Downloads
We maintain the data using Google Drive for global users and Baidu Yunpan for Chinese users. Extraction code for all Baidu Yunpan download is 1234
Download link for annotations: [Baidu Yunpan]
Download link for cameras: [Baidu Yunpan]
Download link for lidars: [Baidu Yunpan]
Training split
annotations: [google drive] lidar data: [google drive] camera data: [google drive]
Validation split
annotations: [google drive] lidar data: [google drive] camera data: [google drive]
Testing split
annotations: [google drive] lidar data: [google drive] camera data: [google drive]
Unlabeled small split
annotations: [google drive] lidar data: [google drive] camera data: [google drive]
Unlabeled medium split
annotations: [google drive]lidar data p1: [google drive]lidar data p2: [google drive]
lidar data p3: [google drive] lidar data p4: [google drive]camera data p1: [google drive]
camera data p2: [google drive] camera data p3: [google drive] camera data p4: [google drive]
Unlabeled large split
annotations: [google drive]lidar data p5: [google drive]lidar data p6: [google drive]
lidar data p7: [google drive] lidar data p8: [google drive]lidar data p9: [google drive]
camera data p5: [google drive] camera data p6: [google drive] camera data p7: [google drive]
camera data p8: [google drive] camera data p9: [google drive]
Data orgainization
We organize the dataset by sensors and split unlabeled data into three different scales. Users can conviently choose which part of data to download according to different training intensions. Tar files larger than 20G are split into multiple files by linux split
command with parta* extensions.
data_root └─3D_DATA ├─3D_infos │ train_infos.tar │ val_infos.tar │ test_infos.tar │ raw_small_infos.tar │ raw_medium_infos.tar │ raw_large_infos.tar ├─3D_images │ train_cam0[1356789].tar │ val_cam0[1356789].tar │ test_cam0[1356789].tar │ raw_cam01_p[0-9].tar │ raw_cam03_p[0-9].tar │ raw_cam05_p[0-9].tar │ raw_cam06_p[0-9].tar │ raw_cam07_p[0-9].tar │ raw_cam08_p[0-9].tar │ raw_cam09_p[0-9].tar └─3D_lidars train_lidar.tar val_lidar.tar test_lidar.tar raw_lidar_p0.tar.parta* raw_lidar_p1.tar.parta* raw_lidar_p2.tar.parta* raw_lidar_p3.tar.parta* raw_lidar_p4.tar.parta* raw_lidar_p5.tar.parta* raw_lidar_p6.tar.parta* raw_lidar_p7.tar.parta* raw_lidar_p8.tar.parta* raw_lidar_p9.tar.parta*
After downloading desired part of data, user should put all downloaded files into the SAME folder discarding the formor folder structure. For example, both train_infos.tar, train_lidar.tar and train_cam0[1356789].tar should put in the same folder. After concatenation and extraction, file structure under data root directory is something like this
data_root └─data ├─000000 │ ├─ cam01 │ │ ├─ frame_timestamp_1.jpg │ │ ├─ frame_timestamp_2.jpg │ │ ├─ .... │ │ └─ frame_timestamp_n.jpg │ ├─ cam03 │ │ ├─ ... │ ├─ cam05 │ │ ├─ ... │ ├─ cam06 │ │ ├─ ... │ ├─ cam07 │ │ ├─ ... │ ├─ cam08 │ │ ├─ ... │ ├─ cam09 │ │ ├─ ... │ ├─ lidar_roof │ │ ├─ frame_timestamp_1.bin │ │ ├─ frame_timestamp_2.bin │ │ ├─ .... │ │ └─ frame_timestamp_n.bin │ └─ 000000.json ├─000001 ├─000002 └─...
where n corresponds to the number of scenes in the specific road.